Conjugacy of One-Dimensional One-Sided Cellular Automata is Undecidable
نویسندگان
چکیده
Two cellular automata are strongly conjugate if there exists a shiftcommuting conjugacy between them. We prove that the following two sets of pairs (F,G) of one-dimensional one-sided cellular automata over a full shift are recursively inseparable: (i) pairs where F has strictly larger topological entropy than G, and (ii) pairs that are strongly conjugate and have zero topological entropy. Because there is no factor map from a lower entropy system to a higher entropy one, and there is no embedding of a higher entropy system into a lower entropy system, we also get as corollaries that the following decision problems are undecidable: Given two one-dimensional one-sided cellular automata F and G over a full shift: Are F and G conjugate? Is F a factor of G? Is F a subsystem of G? All of these are undecidable in both strong and weak variants (whether the homomorphism is required to commute with the shift or not, respectively). It also immediately follows that these results hold for one-dimensional two-sided cellular automata.
منابع مشابه
Undecidable properties on the dynamics of reversible one-dimensional cellular automata
Many properties of the dynamics of one-dimensional cellular automata are known to be undecidable. However, the undecidability proofs often rely on the undecidability of the nilpotency problem, and hence cannot be applied in the case the automaton is reversible. In this talk we review some recent approaches to prove dynamical properties of reversible 1D CA undecidable. Properties considered incl...
متن کاملTwo-Dimensional Cellular Automata
A largely phenomenological study of two-dimensional cellular automata is reported. Qualitative classes of behavior similar to those in one-dimensional cellular automata are found. Growth from simple seeds in two-dimensional cellular automata can produce patterns with complicated boundaries, characterized by a variety of growth dimensions. Evolutionfrom disordered states can give domains with bo...
متن کاملUniversality in Elementary Cellular Automata
The purpose of this paper is to prove that one of the simplest one dimensional cellular automata is computationally universal, implying that many questions concerning its behavior, such as whether a particular sequence of bits will occur, or whether the behavior will become periodic, are formally undecidable. The cellular automaton we will prove this for is known as “Rule 110” according to Wolf...
متن کاملImpartial games emulating one-dimensional cellular automata and undecidability
We study two-player take-away games whose outcomes emulate two-state one-dimensional cellular automata, such as Wolfram’s rules 60 and 110. Given an initial string consisting of a central data pattern and periodic left and right patterns, the rule 110 cellular automaton was recently proved Turing-complete by Matthew Cook. Hence, many questions regarding its behavior are algorithmically undecida...
متن کاملDecidability of Conjugacy of Tree-Shifts of Finite Type
A one-sided (resp. two-sided) shift of finite type of dimension one can be described as the set of infinite (resp. bi-infinite) sequences of consecutive edges in a finite-state automaton. While the conjugacy of shifts of finite type is decidable for one-sided shifts of finite type of dimension one, the result is unknown in the two-sided case. In this paper, we study the shifts of finite type de...
متن کامل